

- https://mdmf.hkust.edu.hk/
 - Open the presentation PDF at "Useful Links" -> "Seminar Materials" -> "MDMF(CWB) Lattice Workshop 20221205-01.pdf".
 - Download the STEP CAD file to be used in workshop at:
 - <u>https://gohkust-</u> <u>my.sharepoint.com/:u:/g/personal/empatlam_ust_hk/EYTROL_YYKJEuBOSDoUnMGwB3I1Dlay-CnjDcMf-</u> <u>xgk8rQ?e=gvLdFC</u>
- If you do not have an Autodesk Account, then please create one at:
 - https://accounts.autodesk.com/
 - Use your registration email account (i.e. the registered HKUST email) as the Autodesk Account name.
- https://fusion.online.autodesk.com

Design for Additive Manufacturing

13 Dec 2022

Lattice Workshop

Contents

- 1. What is Lattice Structure
- 2. Lattice Structure Terminology
- 3. Types of Lattice
- 4. Tools for generating lattice structure (Fusion 360 Product Design Extension)
- 5. Workflow of Fusion 360 Volumetric Lattice

- An engineering or architectural structure made of a network of crosshatch sections.
- Formed by an array of spatial periodic unit cells with edges and faces.
 - Two- and three-dimensional lattice structures

- Lightweight structure
 - High strength-to-weight ratio \succ

Aircraft Wing Structure

Car Suspension System -**Control Arm**

Cylinder Head

05/12/2022 The Hong Kong University of Science and Technology

Height exchanger \succ Large surface area (1) Thermal load (3) Working fluid out with heat **Combustion** Chamber (2) Conduction and convection Heat Exchanger 05/12/2022 Lattice Workshop 6 香港科技大學 The Hong Kong University of Science and Technology

- Energy absorber
 - > Ability to undergo great deformation at a relatively low stress level.
 - Prevent products from collisions and dropping by absorbing impact energy.
 - Reduce vibrations and dampening because of their ability to withstand and recover large strains.

香港科技大學

Insole

05/12/2022

Helmet

Vibration-absorbing Structure

Lattice Workshop

The Hong Kong University of Science and Technology

2. Lattice Structure – Terminology

> Lattice structures are topologically ordered, three-dimensional open-celled.

2. Lattice Structure – Terminology

- Direct patterning
 - Unit cells are translationally repeated.
- Conformal patterning:
 - > Unit cells are repeated conforming to a given shape geometry.
 - > Retains the integrity of the unit cell.
 - > A better approach to stiffen or strengthen the desired structure.
 - Can distribute the load evenly throughout the whole structure.

3. Types of Lattice

3. Types of Lattice

- Beam structure
 - Lattice with a triangular, square profile, and hexagonal cells.
 - High stiffness-to-weight, or be elastic and compliant
 - Light weight and energy-absorbing structure
 - Excellent damage tolerance
 - Better to print strut-based lattice with cell size < 5mm</p>
 - Avoid serious deformation and struts' distortion
- Honeycomb structure
 - High stiffness in a specific direction

3. Types of Lattice

- TPMS (Triply Periodic Minimal Surfaces) \succ
 - Surface-based lattice
 - All-around good mechanical properties
 - Biomorphic geometry, makes TPMS favorable for: \succ
 - Orthopedic implant
 - Tissue-engineering applications
 - TPMS lattices of larger overhanging structures remains feasible
 - Cell walls' inclination varies between layers
 - Providing a self-support property

Gyroid

Schwartz P

Schwartz D (diamond)

4. Tools for generating lattice structure (Fusion 360 – Product Design Extension)

- Fusion 360 Product Design Extension provides a set of advanced 3D design and modeling tools that:
 - > Enable an automated approach to creating complex product designs.
 - Improve product performance and prepare your design for manufacturing with intelligent feature settings and guidance.
 - Volumetric Lattice tool to select a body and specify the cell shape, size, and density of the lattice.
 - Hollow out parts while maintaining their shape and meeting their mechanical specifications.
 - Supports multiple cell types:
 - ➢ Gyroid, Cross, X-Cell, 2.5D X-Cell, Schwarz P, and Schwarz D.

Import Data

5. Workflow of Fusion 360 – Volumetric Lattice

- To use online Fusion 360:
 - https://fusion.online.autodesk.com. Fusion 360 (Ed
- Data uploading
 - Show the Data Panel
 - After creating your folder, then Upload the STEP file "Skate Truck.stp"
 - Right click the uploaded file and select "Create Fusion Design" to create the model as a Fusion360 model.
 - Then right click the created fusion design model, and select "Open" to open the Fusion360 model.
 05/12/2022
 Lattice Works

The Hong Kong University of Science and Technology

MATERIALS, DESIGN AND

05/12/2022

5. Workflow of Fusion 360 – Volumetric Lattice

Change Workspace to "Design"

The Hong Kong University of Science and Technology

- Define Volumetric Lattice
 - Ribbon "Modify" > "Volumetric Lattice"
 - At the first time of using "Volumetric Lattice", you will be asked to start the trial of "Product Design Extension".

Lattice Workshop

Please answer "Yes" to this trial.

- Define Volumetric Lattice
 - After selecting "Volumetric Lattice"
 - Select solid for generating volumetric lattice:
 - Select Body1 from "Bodies"
 - Default lattice type "Gyroid" is applied

5. Workflow of Fusion 360 – Volumetric Lattice

- Select "Setup"
 - Change "Cell Shape" to "Gyroid"
 - Change "Size" to 5mm
- Select "Solidify"

05/12/2022

Change "Solidify" to 0.25

The Hong Kong University of Science and Technology

VOLUMETRIC LATTICE		
Setup Solidity	Offset	
Body	A 1 selected	
Cell Shape	Gyroid	VOLUMETRIC LATTICE
▼ Cell Size		Setup Solidity Offset
Proportions	Uniform	Distribution Uniform
Scale	8	Solidity 0.25
Size	5	

17

香港科技大學

Lattice Workshop

- To specify the surfaces that does not need to apply lattice (say, for joining or supporting purpose):
- Select "Offset"
 - Pick all the surface that need to be kept
 - > Tips:
 - Pan: Hold Middle Mouse Button
 - Rotate: SHIFT + Hold Middle Mouse Button
 - Zoom In / Out: Scroll Middle Mouse Button
 - Select by "Crossing Window": Drag from right to left
 - Change "Thickness" to 3mm

- To generate the STL file of body with volumetric lattice:
 - While the mesh model "Body1(1)" is selected
 - Select "Export..." under File icon

